
Research Project Research Project
Exhibition Exhibition

20242024

M.Sc. in SoftwareM.Sc. in Software
Solutions Architecture,Solutions Architecture,

and the M.Sc. in DevOps, and the M.Sc. in DevOps,

FOREWORD
Today’s Research Project Exhibition is a day presenting great achievement by our taught Master’s students
in our M.Sc. in Software Solutions Architecture, and the M.Sc. in DevOps, Programmes. The students now
presenting their research projects started their Masters programme journeys in January 2022. While it seems
like only yesterday, yet so much has happened since then.

Those graduating today, started as students of the Department of Computing which was then part of the
School of Science and Computing. You will graduate later this year as some of the first graduates to complete
a programme in the new School of Enterprise Computing and Digital Transformation. This new school is part
of a new Faculty of Computing, Digital and Data and represents a major investment by TU Dublin which sees
Computing, Data Science and Digital Transformation as major activity areas for now and the future

As a School of Enterprise Computing and Digital Transformation we are using this opportunity to say that we
are very proud to have you as graduates. Your dissertation work, which is at the cutting edge of Technology
and Computing as it is practice in industry, represents some of the best work produced by students in this
School. As a new School we are, engaged on an extensive consultation process around our mission, vision
and activities and we welcome any comments, feedback and input on how our activities as they are anow
and as they should or could be.

These programmes are being taught here in TU Dublin but they are collaborative programmes where we have
joined with industry in defining and scoping these programmes. Industry needs in these programmes were
refined and proposed by Technology Ireland Skillnet and their ICT employer partners identified the market
need for these programmes, TU Dublin, Computing responded, co-designing an industry list of requirements
into an academic Masters programme.

For the Software Architecture programme we are proud to partner with the International Association of Software
Architects (IASA) and their Irish partners the Irish Computer Society (ICS) in offering this programme. It
should be noted that this programme is recognised by the IASA for membership of the association.

Today we have a new cohort starting their journey as well as a cohort moving to the final part of their journey.
They have plenty to learn but they too will soon reach this point. Creating and passing on knowledge is the
duty of a University and doing this in fast moving Technological Fields relevant to industry is the particular
mission of a Technological University.

We hope you enjoy the project symposium.

2

TU DUBLIN TALLAGHT

With this approach, our Curriculum becomes a Connected Curriculum informed by engagement with
specific industry partners as well as important industry bodies. Our research is connected with
highly ranked international academic partners as well as industry partners and again connects into
our curriculum. Our undergraduates are connected to their future careers through our industry
placement programme which is open to all undergraduates as well as our industry project mentoring
programmes. In 2019 over 80 IT Tallaght Computing students have obtained 6 month placements
in Industry and over 20 more students are working on industry mentored projects. In addition we
have had numerous visits to our classes from past graduates, IT companies and industry experts
connecting our programmes to the external world.

Our soon to be graduates...
Ultimately this evening is about our students. Our students appreciate the time you have taken to
come to talk to them about their projects – every conversation a student has on their project, every
piece of advice given, every consideration made, is a boon to them and greatly appreciated. As ever
we are open to your feedback on the event, our programmes and future directions or any other area
of interest. This booklet represents our largest number of honours degrees graduating in our 26 year
history. As you can see from the range of work inside they have a wide range of current skills and are
disposed to getting things done in a modern technological world.

Dr. Barry Feeney
Head of Department, Computing
TU Dublin Tallaght Campus, Dublin 24,
Ireland
Ph. +353.1.404.2766

Finbarr Feeney PhD / Head of School
School of Enterprise Computing and Digital Transhformation
OT Bhaile Átha Cliath / TU Dublin - Tallaght Campus
D24 FKT9
Ireland

M.Sc. in Software Solutions Architecture,
and the M.Sc. in DevOps

RESEARCH PROJECT SYMPOSIUM AGENDA
19th January 2024

 14:00 - 14:15 Opening Addresses

 Gary Clynch, School of Enterprise Computing and Digital Transformation, TU Dublin

 Dr. John Burns, School of Enterprise Computing and Digital Transformation, TU Dublin

 Róisín Faherty, Head of Discipline, School of Enterprise Computing and Digital Transformation, TU Dublin

 Sean McHugh, Head of Discipline, School of Enterprise Computing and Digital Transformation, TU Dublin

 Dr. Barry Feeney, Head of School of Enterprise Computing and Digital Transformation, TU Dublin

 14:15 - 15:00 Speaker - DevOps

 Ann-Marie Sexton, Senior Delivery Manager, Presidio

 15:00 - 15:45 Speaker - Software Solutions Architecture

 Sean Wallace

 15:45 - 17:30 Poster Presentations

M.Sc. in Software Solutions Architecture,
and the M.Sc. in DevOps

RESEARCH PROJECT SYMPOSIUM AGENDA
19th January 2024

 14:00 - 14:15 Opening Addresses

 Gary Clynch, School of Enterprise Computing and Digital Transformation, TU Dublin

 Dr. John Burns, School of Enterprise Computing and Digital Transformation, TU Dublin

 Róisín Faherty, Head of Discipline, School of Enterprise Computing and Digital Transformation, TU Dublin

 Sean McHugh, Head of Discipline, School of Enterprise Computing and Digital Transformation, TU Dublin

 Dr. Barry Feeney, Head of School of Enterprise Computing and Digital Transformation, TU Dublin

 14:15 - 15:00 Speaker - DevOps

 Ann-Marie Sexton, Senior Delivery Manager, Presidio

 15:00 - 15:45 Speaker - Software Solutions Architecture

 Sean Wallace

 15:45 - 17:30 Poster Presentations

With most technology organisations moving their delivery
platforms to a DevOps approach the shortage of people
with cross sectional skills in DevOps is now acute.
Developed by industry as a direct response to this need
this first-ever Master’s degree in DevOps aims to fill these
important talent gaps and give credit, recognition and
credibility to technologists working in this field.

The advantages of Development Teams and Operations
Teams collaborating to improve the delivery of technology
solutions has meant a rapid adoption of DevOps
approaches to the Software Development Lifecycle.
Closely associated with Lean and Agile concepts in
enhancing the delivery of technology solutions, the
DevOps approach has impacted very rapidly on the
Technology industry.

Most existing DevOps ‘specialists’ grow or develop
into their role with no formal standards or certification,
and a modicum of training in the actual practice of
cross functional DevOps practices. They may already
be experienced, highly skilled, competent and high
performers in their own field of Software Development,
Computing, IT Management, or Quality Assurance but they
can lack the knowledge and understanding of the other
cross functional disciplines they now find themselves
working with daily. Understanding not only the technical,
but also the business and human factors at play during
the high pressure demands of modern software delivery
processes, is essential in the modern discipline of
DevOps.

Online MSc in DevOps

Human and Organisational Issues Software Development Methodologies

• Lean and Agile movements and methods

• Assess and evaluate organisational design and culture
to facilitate DevOps style development, deployment and
support

• Develop and manage global multi-disciplinary teams
including an understanding of the cultural and practical
issues which arise

• Be able to form, lead and develop teams

• Assess competence, accountability, responsibility, norms
and operational management

• Collaboration, negotiation and partnering

• Managing the Future - Creating a readiness for
organisational change, organisational development and
change management

• Technical implications of DevOps – the philosophy, the
history, the SDLC, Lean, Agile Manifesto, continuous
feedback and learning

• Change, Source, Defect Control Systems, Examination of
major industry implementations (e.g. Atlassian, VSTS)

• Code Promotion

• Code Synchronization

• System Debugging

• Software QA

• Automated Testing

• Software Security Vulnerability Management

• Software Telemetry and Monitoring

• Feedback and Learning

Business Technology Strategy IT Infrastructure Fundamentals for DevOps

• The Business Case for Agility and DevOps

• Lean/Agile management/methods/frameworks (SAFE)

• Product road maps, pipelines, backlogs, valuing new
features and technical debt

• Business case development and risk assessment

• Creation/management of multi-annual business plans

• Financial Management of Product and Technology life-cycles

• Project Management and Methodologies

• The end of the monolithic project

• Designing for agility and value

• Challenges for DevOps

• Regulated Software

• Impact for Customers of DevOps approach

• Automation of Infrastructure

• Task and Process automation languages

• Advanced System Administration

• Software Security

• System Hardening

• Policies and implementation

• Virtualisation

• Containerisation

• IT Network and Infrastructure Protocols

• IT Network Monitoring

• Continuous Deployment

• Cloud Computing Concepts

• Infrastructure as Code

Award Level
There are two phases to the award. Candidates are
registered for the full Masters of Science in DevOps Level
9 degree (90 credits) however candidates may opt to exit
the programme on successful completion of the first
three semesters with 60 credits and receive a Level 9
Postgraduate Diploma in DevOps (60 credits). Please
note exit awards are at the discretion of the college and
no refund of fees will be due.
The award structure will place greater emphasis on
continuous assessment, practical and project work rather
than on formal examinations. In fact there are only 2
modules that carry an actual exam.
The aim is that participants will gain a deep
understanding of the topics and content covered, and be
able to demonstrate this acquired knowledge as proven
competence in tests and exercises drawn from practical
“real life” DevOps scenarios.

Semester 1: Introduction to DevOps

Semester 2: DevOps Fundamentals

Programme Delivery
The programme will start with a 3 day workshop which
will involve all participants being physically present.
This is seen as important to facilitate networking,
experience sharing and group learning.

It is expected that lectures will be delivered one evening
per week in term time and every 3-4 weeks there may
be a requirement to hold lectures twice in that week.
There will also be a requirement to attend one on-
campus day at the end of each semester.

Lectures will be streamed live from TU Dublin (Tallaght
Campus) i and will be available for download and offline
viewing.

Advanced IT Infrastructure for DevOps DevOps in Practice

• Architectural Design to support DevOps

• The DevOps supply-chain and PLM relationship

• DevOps in the Public Cloud

• Comparative Analysis of Cloud Offerings

• Cloud Scalability and Elasticity3

• Load Balancing

• Virtualisation Automation

• Provisioning and Orchestration

• Software Configuration Management

• Software Provisioning Management

• Security in the Public Cloud

• Degrading systems gracefully

• Chaos Monkey

• Server-less Compute in the Cloud

• The DevOps paradigm/pipeline in practice requirements

• Develop Continuous Integration/Test/Deployment Release
management

• Monitor and Learn

• Feedback and Iteration

• Detailed DevOps Case Study of the technical and human
experiences of typical practitioners, e.g.

- Google SRE (Site Reliability Engineering)

- Intercom (Customer Messaging Platform)

Research Methods Research Project

• Academic Writing

• Qualitative and Quantitative research

• Surveys

• Statistics

• Applied piece of Research in DevOps area

• Encompasses a Proof of Concept/Prototype

• Supplements DevOps Theory knowledge

This is an opportunity for students to carry out a piece of work
which is at the cutting edge of the field and explores in depth
a feature or element of that field. It is perfectly feasible, and
there are many examples of this, for students to carry out their
research project on a piece of work of direct relevance to their
company or organisation. The academic team in TU Dublin
(Tallaght Campus) have deep industry experience and have
supervised and developed MSc. projects which explore
business values, infrastructure automation and DevOps
projects with real industry relevance.

Semester 3: Advanced DevOps

Semester 4: DevOps Research

Understanding not only the technical,
but also the business and human
factors at play during the high
pressure demands of modern software
delivery processes, is essential in the
modern discipline of DevOps.

Human and Organisational Issues Software Development Methodologies

• Lean and Agile movements and methods

• Assess and evaluate organisational design and culture
to facilitate DevOps style development, deployment and
support

• Develop and manage global multi-disciplinary teams
including an understanding of the cultural and practical
issues which arise

• Be able to form, lead and develop teams

• Assess competence, accountability, responsibility, norms
and operational management

• Collaboration, negotiation and partnering

• Managing the Future - Creating a readiness for
organisational change, organisational development and
change management

• Technical implications of DevOps – the philosophy, the
history, the SDLC, Lean, Agile Manifesto, continuous
feedback and learning

• Change, Source, Defect Control Systems, Examination of
major industry implementations (e.g. Atlassian, VSTS)

• Code Promotion

• Code Synchronization

• System Debugging

• Software QA

• Automated Testing

• Software Security Vulnerability Management

• Software Telemetry and Monitoring

• Feedback and Learning

Business Technology Strategy IT Infrastructure Fundamentals for DevOps

• The Business Case for Agility and DevOps

• Lean/Agile management/methods/frameworks (SAFE)

• Product road maps, pipelines, backlogs, valuing new
features and technical debt

• Business case development and risk assessment

• Creation/management of multi-annual business plans

• Financial Management of Product and Technology life-cycles

• Project Management and Methodologies

• The end of the monolithic project

• Designing for agility and value

• Challenges for DevOps

• Regulated Software

• Impact for Customers of DevOps approach

• Automation of Infrastructure

• Task and Process automation languages

• Advanced System Administration

• Software Security

• System Hardening

• Policies and implementation

• Virtualisation

• Containerisation

• IT Network and Infrastructure Protocols

• IT Network Monitoring

• Continuous Deployment

• Cloud Computing Concepts

• Infrastructure as Code

Award Level
There are two phases to the award. Candidates are
registered for the full Masters of Science in DevOps Level
9 degree (90 credits) however candidates may opt to exit
the programme on successful completion of the first
three semesters with 60 credits and receive a Level 9
Postgraduate Diploma in DevOps (60 credits). Please
note exit awards are at the discretion of the college and
no refund of fees will be due.
The award structure will place greater emphasis on
continuous assessment, practical and project work rather
than on formal examinations. In fact there are only 2
modules that carry an actual exam.
The aim is that participants will gain a deep
understanding of the topics and content covered, and be
able to demonstrate this acquired knowledge as proven
competence in tests and exercises drawn from practical
“real life” DevOps scenarios.

Semester 1: Introduction to DevOps

Semester 2: DevOps Fundamentals

Programme Delivery
The programme will start with a 3 day workshop which
will involve all participants being physically present.
This is seen as important to facilitate networking,
experience sharing and group learning.

It is expected that lectures will be delivered one evening
per week in term time and every 3-4 weeks there may
be a requirement to hold lectures twice in that week.
There will also be a requirement to attend one on-
campus day at the end of each semester.

Lectures will be streamed live from TU Dublin (Tallaght
Campus) i and will be available for download and offline
viewing.

17

DEPARTMENT OF COMPUTING

•	 M.	Sc.	Applied	IT	Architecture	(online)
In conjunction with Irish Computer Society and accredited by International Association of Software
Architects. A Technology Ireland Skillnet funded programme. This programme is 80% online with two
days per semester attendance required.

•	 M.	Sc.	Computing	with	DevOps	(online)
This programme was designed in conjunction with leading ICT companies such as Microsoft, Fidelity,
IBM, Ericsson who form the Technology Ireland Skillnet. This programme is 80% online with two days
per semester attendance required.

Non-Standard Applicants
Note for interested applicants: Next intakes for these Skillnet programmes set for January 2019.
Standard admissions requirements include a relevant bachelor’s degree at honours level. It is
recognised that there are experienced and skilled potential participants for the programme who may
not fit the standard entry profile. A non-standard admission process is available here which can be
based on prior experiential learning and/or qualifier modules. These qualifier modules can be taken
from September 2019 for admission in January 2019. Contact bfeeney@it-tallaght.ie or mhendrick@
it-tallaght.ie for more information.

Coming Soon….
•	 Cloud Architect Certification Preparation Course
 Delivered over a semester. Includes preparation for Cloud Architect Certification

•	 B. Sc. Hons. Cloud Computing and DevOps
 Specialisations in Software/ DevOps and Automation as well as Infrastructure Automation.

ix

14

TU DUBLIN TALLAGHT

The TUDublin (Tallaght Campus) M.Sc. in Applied IT Architecture is the first of its kind in the world to
be developed based on the IASA Five Pillars.

For the first time, candidates can gain a full Masters of Science degree in this specialist area through
a mixed learning process with an emphasis on practical application in the workplace.

What is IT Architecture? (From IASA Global)
Architecture at IASA is the practice of business, organization or client gain through the application of
technology strategy. It is the art and science of designing and delivering valuable technology strategy.
At its core, the ITABoK describes how to create a professional person or group of professionals who
can consistently find new applications of technology to generate positive outcomes for their client or
employer. IT Architects:
•	 Retain depth in technical skill as well as business skill
•	 Able to successfully work with both business and technical staff
•	 Develop their own or others business cases based on technology driven innovation
•	 Retain the ability to deliver projects on those business cases
•	 Deliver business projects more successfully based on outcomes than others

Accreditation of Master
of Science in Applied IT
Architecture by IASA

Enterprise
Architects

Solution

Information Business

Software

Developers
Cloud

Service
Engineer

IT
Professionals

Infra-
structure

Undergraduate
Programs

MSc. Applied
IT Architecture

IT
 A

rc
hi

te
ct

s

TU Dublin Careers

PROJECTS

Rachael McLoughlin
Azure Container Orchestration...PG 1

Ainul Habib
KNative v. Azure Functions..PG 2

Ellen Mezera
Effectiveness of Generative AI on the Development of Graphic Software Artifacts..PG 3

Janni Balraj
Case Studies of RestAPI and GraphQL Architecture..PG 4

Ruchira Anil More
Infrastructure as code testing, Terraform Vs Terratest...PG 5

Robert Beattie
An Analysis of Computational Efficiency in Azure App Service..PG 6

Edmund Fitzgerald
Software Repository Assessment in DevOps: A Machine Learning Approach to Quality.................................PG 7

Basil Roy
Technical Debt Tool Comparisons..PG 8

Anupam Saha
Evaluating the Next Generation Sidecar-less Kubernetes Service Mesh: Ambient Mesh.................................PG 9

Darragh Madden
Combining Web Application Security Testing Tools...PG 10

Alan Kavanagh
A Performance and Cost Analysis of Java based Function-as-a-Service on AWS...PG 11

Przemyslaw Gliniecki
Comparing Tsetlin Machines to DNNs in model performance and efficiency..PG 12

Sooraj Shajahan
Istio Service Mesh vs. Capsule Operator for Kubernetes Multi-tenancy...PG 13

Ruaidhri Moran
An analysis of Terraform as an enabler of a multi-cloud strategy...PG 14

Ben Stuart
ML pipeline performance comparison..PG 16

Ashwini Ravikumar
Comprehensive Study of Container Orchestration Frameworks...PG 17

Trinath Chakka
A Comprehensive Evaluation of Helm and Helmfile for Efficient Management of Microservices..................PG 18

Melbin Paul
Evaluation of Google GCP Object Storage and and Microsoft Azure Blob Storage..PG 20

Ian Bruwer
Amazon Textract vs Google Document AI vs Azure Document Intelligence..PG 21

PROJECTS contd.

Brian Ryan
Comparative Analysis of Google Cloud Deployment Manager and Terraform...PG 22

Darragh Clerkin
Analysis of Image Security Vulnerabilities over Time...PG 23

Weverton Castanho
Navigating Quantum Realities: A Comprehensive Analysis of Quantum Computers, Providers,
and Qiskit Compatibility Challenges and Opportunities..PG 24

Emanual Alby
Effectiveness of Microservice and Token based Security access control method..PG 25

1

Azure Container Orchestration
Rachael McLoughlin
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193202@myTUDublin.ie

Introduction
Cloud providers are increasing their serverless offerings surrounding container orchestration, all aimed at focusing on accelerating the development of
applications and shifting focus away from infrastructure management and complexities.
These CaaS offerings are still relatively new to the market, Azure Container Apps was only released in May 2022 and Google Cloud Run in Nov 2019.
This research project aims to give developers or software architects the necessary information to be able to make informed decisions in choosing which
of the Azure container management offerings, ACA or AKS, is most suitable for a particular application and how much complexity has actually been
taken away. Additionally it aims to assist in determining what types of resources would be required in a team and the level of upskilling that may be
required within an existing team.

Research Questions
1. Does the introduction of additional abstraction have an impact when compared to running

AKS in terms of performance ?

2. Does the additional abstraction provided by the CaaS solution, Azure Container Apps, result
in a measurable reduction in complexity from the developer perspective ?

Infrastructure Specification

Workload Definition & Results
1. Infrastructure Performance Evaluation:

Utilize performance testing tool sysbench to ascertain variances in performance of the underlying infrastructure.Findings: Results were better overall
on the azure container app infrastructure across each of the areas tested CPU, Memory and Disk IO

2. Ease of configuration:

Capture the perceived level of difficulty configuring the service. Taking into account the volume of options
presented to the user. One of the key areas examined was the ease of scaling configuration, JMeter was utilised
to send load and trigger scaling up and down of nodes. Findings: The learning curve is significantly reduced
and ACA allows a much easier entry point to utilizing container solutions for an organization.

3. Deployment time:

Capture the amount of time taken to deploy the ACA and AKS Environments and applications following config-
uration.Findings: Considerable time was recorded for deployment of the Azure container Environment, which is
a secure boundary around groups of container apps that share the same virtual network and logs, taking approx
40 minutes for deployment of the resource.

4. Upskill time required:

Record the amount of time spent upskilling in order to have sufficient knowledge to carry out the deployment of
the service and record this against the experience level of the person carrying out the deployment.Findings: A
knowledge of containers and container registries was sufficient to complete deployment of the application within
an azure container app environment.

5. Configuration Limitations:

Determine what are the use cases where a particular offering will not meet the requirements and force the user to use a service that allows more in
detail configuration. Findings: ACA Limitations that would render the service unsuitable are container support, limited network configuration, scale
triggers. operating system and the inability to run privileged containers.

Conclusions and Future Work
Based on the researchers experience the learning curve is significantly reduced by using Azure Con-
tainer Apps over Azure Kubernetes Service. This finding was based on a scoring system that was
used across a range of areas to compare the differences in complexity across both services.
Utilizing benchmarking tool sysbench findings showed results were better overall on the ACA infras-
tructure across each of the areas tested via sysbench tool testing on CPU, Memory and Disk IO,
leaving scope for future research into why this was the case.

QR Code for Recording

2

Knative vs Azure Functions
Ainul Habib
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00159358@myTUDublin.ie

Introduction

Azure Function: Offering

Microsoft Azure provides a platform to build,
deploy, manage and run Serverless Application
in Azure Cloud.
Developers can use Azure DevOps Pipeline,
GitHub Actions or Azure CLI to build and
deploy their Serverless code to an Azure
Function App, which groups Azure Functions
as a logical manageable unit.
These Serverless functions are triggered by
events from various Sources like Event-Grid,
Event-Hub or by HTTP incoming requests.

Knative: Cloud-Native Offering

Topic Overview
• Cloud-Event Support: Both Azure Function and Knative follows Serverless event-driven architecture, supporting "Cloud-Event" API. Developers

only produce a functional code, containing business logic. It is invoked by Serverless framework, passing Cloud-Event object as parameter. "Cloud-
Event" contain event payload and metadata. No infrastructure code injection is needed.

• Cold-Start: All Serverless platform suffer from Cold-Start latency. It is delay in getting Serverless application scaled from Zero to One.
Application runtime plays a major role in cold-start latency, e.g. Azure Function perform better using .Net runtime, while NodeJS produce
lower start-up latency compared to Java. Application request latency may increase due to Cold-Start delay, effecting application performance.
Azure Functions, under Premium Plan, keeps a "Warm instance" of Serverless, to reducing the cold-start latency. Knative also provide mitigation
to cold-start latency by keeping at-least one instance alive.

• High Scalability: Knative and Azure Functions scale horizontally, based on high volume of events metrics. These metrics includes "Concurrency",
"TPS", "CPU" and "Memory", which can be configured for Serverless applications.

• Logging and Metrics: Azure Functions and Knative emit logs to console-out, which must be streamed to external logging system. Knative emits
many Kubernetes and custom metrics related to health and performance. Monitoring system Prometheus is deployed to capture and archive the
required metrics. Application Insight is easily configured in Azure Platform to capture and present Azure Function’s metrics.

• Build and Deployment: Azure and Knative offer CLI to package and deploy the Serverless application to the Cloud. They also allow easy
integration to DevOps pipeline and GitHub action. Knative CLI packages the function code and runtime to a docker image. Azure function offers
many form of packaging and deployment like Zip, Docker Image, Cloud and Git Sync.

Conclusions and Future Work
Knative is a Cloud-Native alternative to traditional Serverless platform offered by public cloud
providers like Azure and AWS. Customers can easily migrate their Knative Solutions from current
public cloud Kubernetes platform to another.
Azure Function on other hand keeps the customers "vendor locked", making transition to different
cloud provider difficult and costly. But Azure Functions lowers the maintenance cost by fully
managing the platform, servers and infrastructures.

Future Works: A study into feasibility making the running cost of Knative applications to Zero.

QR Code for Recording

3

Effectiveness of Generative AI on the Devel-
opment of Graphic Software Artifacts
Ellen Mezera
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X12345678@myTUDublin.ie

Introduction
The surge in Artificial Intelligence research, particularly in Generative AI following the release of models like GPT-3 in 2022, has prompted extensive
exploration of its potential for enhanced productivity in various industries, especially in coding tasks. As AI solutions mature, software engineering
practices are evolving, with a notable adoption of Generative AI for coding, while the application of these technologies to tasks involving image generation
is still in its early stages. This research sets out a methodology leveraging Large Language Models to generate graphic software artifacts. More specifically
it applied GPT-4’s text-to-text capabilities in generating UML Diagrams supported by Mermaid as a rendering tool. The resulting diagrams were validated
by Subject Matter Experts to assess results produced by GPT-4.

Research Question 1
RQ-1 How can OpenAI’s GPT-4 model be lever-
aged to generate software architecture diagrams?

This research sets out a methodology on how
ChatGPT-4 can be used for software diagrams
generation using its text-to-text capabilities,
while text-to-image are not yet mature. More-
over, it applies this methodology on the genera-
tion of UML Class and Sequence diagrams.

The methodology is applied in an experiment
where Chat-GPT is asked to generate diagrams
for three use case scenarios around a Online
Shopping System.

Research Question 2
RQ-2 What is the efficacy of OpenAI’s GPT-4
model generating software architecture diagrams
based on the evaluation from Subject Matter Ex-
perts?

In order to validate the results obtained from
the experiment created to address RQ-1, Sub-
ject Matter Experts assessed the results via a
validation questionnaire, scoring 5 categories:
Accuracy, Clarity, Completeness, Technical cor-
rectness and Usefulness.

Results
Class and Sequence diagrams were generated by GPT-4 for three use case scenarios around a Online
Shopping platform in ascending order of complexity. The six diagrams were scored by Subject Matter
Experts via a in 5-point Lickert scale questionnaire.

1. Effectiveness of ChatGPT in UML Diagram Generation:

The overall Mean Score of 3.54 out of 5 indicates a moderate level of effec-
tiveness of ChatGPT in generating UML diagrams through the method-
ology applied in this experiment.

2. Distribution of scores:

The majority of scores given by evaluators through the
questionnaire across all diagrams are concentrated be-
tween 3 and 4, with 4 having its majority share. The
central tendency of scores indicates that evaluators found
the diagrams to be above average in terms of the categories
accessed.

3. Performance across Different Complexity Levels:

The three use cases scenarios selected for the experiment were in an es-
calating complexity order. The mean scores outline a drop as use cases
grow in complexity, however the drop is quite minimal. The data suggests
a possibility of limitations of the LLM’s capability to effectively handle
higher UML diagrams of higher complexity.

UML Class and Sequence Diagrams generated by ChatGPT-4

Conclusions and Future Work
This research underscores the growing importance of exploring Generative AI’s role in Software Engi-
neering tasks, particularly in generating software architecture diagrams. While the study reveals that
ChatGPT-4 demonstrates moderate efficacy in producing UML Class and Sequence Diagrams, fur-
ther investigations should extend to other diagram types, involve a more diverse group of evaluators,
and integrate a feedback loop for continuous improvement. Additionally, ethical considerations must
be carefully addressed as Generative AI becomes increasingly integrated into real-world scenarios.

QR Code for Recording

4

Case Studies of RestAPI and GraphQL
Architecture
Janni Daniel Balraj
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193260@myTUDublin.ie

Introduction
The adoption of microservices architecture has experienced significant growth, driven by its appeal in terms of modularity, scalability, and deployment
ease. However, this proliferation of microservices has intensified the demand for efficient data exchange among them. While REST API has long been
the standard protocol for microservices communication, its limitations in flexibility and performance have spurred the ascent of GraphQL as a more
efficient alternative, as highlighted by studies comparing their performance. As the number of microservices continues to rise, traditional methods like
REST APIs prove challenging, leading to issues such as over-fetching or under-fetching of data. GraphQL addresses these challenges by allowing each
microservice to define its schema, thereby simplifying data integration and reducing coordination efforts between teams. In addition to its flexibility,
GraphQL contributes to enhanced performance by empowering clients to specify their precise data requirements, resulting in a reduction of unnecessary
requests and improved response times. Despite these advantages, the integration of GraphQL with microservices presents its own set of challenges,
including ensuring data consistency across services and requiring upfront planning for schema and resolver functions. This research paper aims to delve
into the integration of GraphQL with microservices, conducting a comparative performance analysis with REST API in an on-premises environment.

Research Questions
The conventional approach, using RESTful
APIs for communication, often encounters chal-
lenges related to over-fetching and under-
fetching of data, hindering system performance
and efficiency. The emergence of GraphQL of-
fers a compelling solution to these challenges,
allowing precise data retrieval and reducing the
volume of redundant requests in a microservices
environment.

The core problem addressed in this research is:

Q1 - To what extent does the integration of
GraphQL improve the efficiency and perfor-
mance of data exchange between microservices
when compared to RESTful APIs, and

Q2 - what are the implications and challenges of
implementing GraphQL in a microservices ar-
chitecture?

Test Strategy and Methodology
• Functional Testing, Performance Testing

and Usability Testing

• Data Preparation: 10 million stock records
were generated and inserted into the Post-
greSQL database.

• Load tests were conducted using Apache
JMeter to simulate concurrent user re-
quests for stock data retrieval.

Architecture

1. REST API Architecture:

Stateless Communication: REST
APIs are stateless, meaning that each
request from a client to a server con-
tains all the information needed to un-
derstand and fulfill the request. The
server does not store any information
about the client’s state between re-
quests.
Resource-Based: Resources, such
as data objects or services, are iden-
tified by URLs (Uniform Resource Locators). Clients interact with these resources using standard
HTTP methods like GET, POST, PUT, and DELETE.
Representation: Resources are represented in a format such as JSON or XML, and clients can
manipulate these representations.

2. GraphQL Architecture:

Query Language: GraphQL is a
query language for APIs. Clients can
request only the data they need, and
the server responds with the requested
data in a single JSON object.
Hierarchical Structure: The struc-
ture of a GraphQL query mirrors the
structure of the data it retrieves. This
hierarchical nature allows clients to
request nested data in a single query.
Single Endpoint: Unlike REST, which often has multiple endpoints for different resources,
GraphQL typically exposes a single endpoint for all interactions

Performance Graph: RESTAPI vs GraphQL

Conclusions and Future Work
In real-time data scenarios, GraphQL surpasses REST API by efficiently delivering specific data
fields, thereby reducing network traffic and enhancing responsiveness. The adaptability of GraphQL
enables seamless integration of new data sources without disrupting existing endpoints in complex
applications. Looking ahead, the current implementation in a local environment is slated for deploy-
ment in cloud platforms like AWS, GCP, or Azure. The future plan includes enhancing scalability
and establishing a resilient architecture to optimize performance and reliability.

QR Code for Recording

5

Infrastructure as code testing, Terraform Vs
Terratest
Ruchira Anil More
Department of Computing, TU Dublin, Tallaght, Ireland
X00193212@myTUDublin.ie

Introduction
Cloud adoption has become vital for organizations to deliver new services. Early time to market with stable code delivery has introduced use of automation
in DevOps to provision infrastructure. Such automated process of infrastructure provisioning is termed as Infrastructure-as-code. Infrastructure-as-code
is one of the practices that many IT industries have embraced to automate their infrastructure provisioning and maintaining process. Though, this has
been favourable in administering and provisioning infrastructure using machine readable scripts, there have been issues with the functionality since they
might also have defects. The manifestation of defects in the scripts is unavoidable since they are like any other software code, lines of code in a file.
Thus, it is essential to have a qualitative analysis on these files to achieve defect free Infrastructure as code. This poster represents a brief overview of
the research, where a study was performed to compare the two testing tools/frameworks for PaaS IaC, Terraform test framework Vs. Terratest. Below
research question were identified in order to perform further experiments:

RQ1: How does Terratest (Gruntwork) and Terraform-test (Hashicorp) compares in terms of use cases, developer experience,
flexibility, exception handling and reporting.

RQ2: Limitations and challenges to adopt Terratest and Terraform test.

Comparison Test Architecture, Introduction to Terratest and Terraform test framework

1. Test Architecture

2. Introduction to Terratest and Terraform test framework

Terratest is a testing library developed by Gruntwork. It has libraries and functions that help with
testing terraform, docker, packer, Kubernetes code on AWS, GCP and Azure. Hashicorp announced
its test framework to test terraform code on 4th of October 2023.The idea behind doing so was to
enable terraform practitioners to know that their configurations will function as expected.

Sample test files and output

Conclusions and Future Work
The Terraform test framework is favored by developers due to its ease of adoption and familiar
HCL syntax. Terratest offers more flexibility in handling complex tasks, particularly in complex
integration tests and end2end tests. Despite Terratest’s ability to handle error and exceptions, it
sometimes fails the test and cleans up the spun infrastructure, causing manual intervention and
potential cost concerns. For users seeking more control, Terratest is a better option. Reporting with
Terratest can be improved by using an additional Terratest utility, which allows users to identify
errors and generate UI reports. However, Terraform’s reporting is limited to console output and
cannot be integrated into a UI reporting tool. Overall, Terraform is better for unit test validations,
but Terratest is recommended for complex integration tests and end2end tests. As for future work,
Using the same set of experiments, the CI/CD support can be tested. Also, as part of Terratest a
deeper analysis can be made as it offers other services like testing Kubernetes, it was tested briefly
in the above experiments, yet an extensive study can be performed. Along with this, Terratest also
offers testing Docker and Packer that was not evaluated in these experiments. One of the other
interesting topics can be studying if these test frameworks detect configuration drift and does it
provide any feature of analysing the same.

QR Code for Recording

6

An Analysis of Computational Efficiency in
Azure App Service
Robert Beattie
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193224@myTUDublin.ie

Introduction
This paper examines Microsoft Azure App Service, focusing on service tiers, thread counts, and computing efficiency. It explores the performance of
single- and multi-threaded workloads, particularly in Fibonacci calculations, across different tiers. Results show that lower cost tiers often outperform
premium ones in cost efficiency and computing, albeit with some inconsistencies. The study also addresses the inherent unknowns in Platform as a Service
(PaaS), offering insights for Developers, DevOps, and Software Architects. Utilising heat maps and line charts, the research analyses the calculation
time for Fibonacci numbers on servers across East US, West Europe, and Southeast Asia. It investigates the correlation between server-tier performance,
costs, and regional architectural differences. The findings, presented through graphs and critical observations, underscore the importance of tier selection
based on workload and location, concluding with recommendations for cloud service optimisation.

Azure Analysis
This study investigates Azure App Service’s
handling of single-threaded applications. Two
key questions guide the research: 1) How does
Azure handle concurrent HTTP requests in
single-threaded architecture regarding core uti-
lization? and 2) Are there performance dif-
ferences in Azure deployments across regions?
The research uses a Fibonacci calculation API to
explore core utilisation and performance across
service tiers and regions and cost-effectiveness
in cloud applications.

Knowledge Gaps
Despite extensive Azure App Service learning re-
sources, gaps remain in understanding the PaaS
model’s resource utilization. This thesis focuses
on four key areas: Tier Performance, Real-
World Application Scenarios, Impact of
Regional Variations, and a Detailed Cost-
Benefit Analysis. It examines explicitly the
performance and cost of single-threaded versus
multi-threaded workloads in Azure, addressing
crucial knowledge gaps in cloud computing lit-
erature.

Thesis Structure
Methodology:

This research examines Azure App Service’s performance using a FibonacciCalculationAPI. Tests
were conducted across three regions (West Europe, East US, Southeast Asia) on nine Azure tiers,
focusing on CPU and memory usage. The API, developed in ASP.NET Core, was monitored using
Azure Application Insights. Custom C tests simulated different thread loads, with results analyzed
in Power BI to understand efficiency and scalability in cloud environments and regional variation
impacts.

Regional Compute Times: Tier Compute Times: Core Utilisation Analysis:

Summary:

Power BI analysis of Azure App Service tests revealed: 1) Higher performance in premium tiers,
suggesting a price-performance correlation. 2) Single-threaded tasks are uniformly handled, while
multi-threaded tasks show concurrency complexities. 3) The premium tier demonstrates efficient
CPU utilization across varying loads. 4) Cost efficiency is crucial in computational power allocation.
These insights guide IT professionals in understanding Azure’s hardware management, aiding in
informed service tier selection for applications.

Topic Overview
This matrix visualisation analyses thread count impact on
Azure App Service performance, using Fibonacci computa-
tions as a metric. It shows average compute times across sin-
gle, two, and four-threaded tests, visualised through a heat
map indicating time from white (minimum) to red (maxi-
mum). Key insights include uniformity in single-threaded
performance, variable multi-threaded behaviour, and the ef-
fect of thread failure on overall efficiency. The study high-
lights the nuances in resource allocation and thread manage-
ment within Azure.

Conclusions and Future Work
This thesis concludes by synthesizing Azure App Service test findings, addressing how Azure handles
concurrent requests and regional performance variations. It confirms Azure’s finesse in managing
core utilization, especially in premium tiers, and notes regional disparities in resource usage. The
study guides developers in service tier and region selection, enriching academic understanding of
single-threaded applications in serverless environments. Future work suggests broader, real-time
analyses and comparative cloud provider studies for more profound insight.

QR Code for Recording

7

Software Repository Assessment in DevOps:
A Machine Learning Approach to Quality
Edmund Fitzgerald
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193258@myTUDublin.ie

Introduction
This research embarks on an innovative journey to evaluate software repository quality within the DevOps realm. Utilizing a machine-learning model,
it analyzes data from the top 100 GitHub repositories in JavaScript, Python, and Java, focusing on commit history and GitHub metrics such as stars
and forks. This approach transcends traditional, subjective assessment methods, offering a unique blend of qualitative and quantitative analysis. It aims
to establish new benchmarks for software development quality by integrating technical and community-driven data. This study not only contributes to
software engineering best practices but also paves the way for advanced AI-driven quality assessment tools in software development.

Machine Learning Model

The model employs Python’s ’sklearn’ package
and integrates four distinct types: Linear
Regression, Ridge Regression, Random Forest,
and Gradient Boosting. Each model’s unique
methodology and algorithmic framework are
comprehensively detailed, highlighting their
specific capabilities in identifying and
analyzing patterns and trends within the
dataset. This detailing aids in understanding
the nuanced performance of each model type
and their roles in predictive analysis.

Data Collection and Preprocessing

The data was collected by scraping all the
commit metadata for 4 months from GitLab,
via GH Archive and storing this information in
a PostgreSQL database. This was then queried
and the results saved as CSV files for model
training. To ensure accuracy once complete,
one repository’s data was moved out into a
separate CSV to verify the model for QA.

Results

Figure 1: Java Figure 2: JavaScript Figure 3: Python

Figure 4: MSE and R squared

The findings of this thesis demonstrate statistical significance, indicating promising directions for
future research. However, they currently fall short of being immediately applicable for production use.
With further refinement and development, these methods have the potential to not only outperform
existing approaches but also provide quantifiable enhancements in practical applications.

Topic Overview
Focusing on the top 100 GitHub repositories in JavaScript, Python, and Java, this research aims to develop an extensive evaluation method by analyzing
commit data and GitHub metrics like stars and forks. This innovative blend of qualitative and quantitative analysis seeks to enhance traditional,
subjective methods of repository assessment.
The study begins with exhaustive objective data collection from GitHub, considering the top three languages to ensure relevance and broad applicability.
It involves gathering comprehensive commit history, offering insights into development practices, and using GitHub comparative metrics such as Stars,
forks, and followers as a proxy for subjective surveys or interview data.
Central to this research is a machine-learning model trained on a rich dataset. It employs algorithms adept at identifying complex patterns, which is
crucial for understanding the nuances of code quality. The study addresses the challenge of defining and quantifying ’quality’ in software repositories,
employing community ratings like GitHub stars and followers as proxies, and acknowledging these metrics’ weaknesses while offering them as a more
useful metric than subjective surveys.
This approach aims to assess the feasibility of using machine learning to predict ongoing repository quality based on objective metrics. The model is
expected to be a valuable tool for developers, project managers, and organizations, aiding in informed decision-making regarding open-source projects.

Conclusions and Future Work
This thesis shows machine learning’s effectiveness in improving DevOps software repository
assessment. Analyzing commit data and GitHub metrics offers an objective approach surpassing
conventional methods. It also highlights the challenge of defining ’quality’ in software development
due to metric subjectivity, suggesting varied quality indicators. Future research areas include:

1. Algorithm Enhancement: Apply advanced techniques for improved model accuracy and
adaptability.

2. Tool Integration and Development: Utilize findings in DevOps tools for real-time quality
assessment.

3. Broadening the Model’s Application: Expand the model to predict various software
development aspects.

QR Code for Recording

8

Technical Debt Tool Comparisons
Basil Roy
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193213@myTUDublin.ie

Introduction
Technical Debt can be sometimes known as tech debt or code debt. Technical debt basically describes what results when development teams take certain
actions towards technical implementations to speed up the delivery of a certain functionality of the project to meet business deadlines set which will
need refactoring in the future. Briefly Technical Debt can be put forward as the outcome of prioritizing speedy delivery of code over perfect quality code.
If you are an individual working in the software industry this is were technical debt creeps up mostly. To tackle this debt there are various technical
debt tools available in the market. With Technical debt there are a few risks associated with it. With risks there comes impact. These factors are to be
considered as they are very crucial in the long run and on the sustainability of the applications in question.
With the usage of technical debt tools, we can certainly maintain or erase technical debt altogether from our environment, but a thing to lookout for is
that there are a lot of tools available in the market. How can we determine which is the correct one for our team / organization. That is the challenge
we are facing.

Research Question
RQ1 : What factors mainly influences a user
when deciding to Onboard a new tool ?
RQ2 : Do users fall into the trap of selecting
the most popular tool in the market and not
consider the requirements at stake ?

Weighted Factor Results

Testing Methods

1. Testing Design Flow:

This is the testing design followed for the experiments. It
is a simple flow which is repeatable for the 4 repositories
that was chosen for this test. The base of the flow starts
from our repositories as that is our primary location of
code base to scan. We employed Github Action feature
which GitHub provides to aid us to setup up scanning in a more efficient manner. We had chosen
3 Tech debt tools for this comparison which were Sonar Cloud, Synk And CodeEql. With the use
of Github Actions we can use a template yaml file which has predefined steps for specific tech debt
scan. But we had to modify those files to meet our requirements. Since this was a yaml file there
are options to trigger the running of the file on commit or manual basis. with this option it allows
us to achieve Continuous Integration for running the scan on each commits user do to maintain a
healthy tech debt backlog. Once this setup is complete we focus on any configuration needed to
make with the repository itself to allow to scan the repository. As there will be permission required
and addition of secrets/tokens which is a way the Tool communicates with the Repository. Once the
Scan is done we head to the Tool Dashboard for each individual tool and here the users can analyse
the scanning results. There maybe stats available which can aid users to see the overall health of the
application.

2. Questionnaire:

Survey was an important factor to the data
collection for our experiments.For conduct-
ing surveys a Sample of users for participat-
ing in the survey.Simple random technique
was used to collect our sample of 23 users
for our survey.

Key Research Findings

Conclusions and Future Work
This research had few limitations such as repository code languages used and only the free trial
versions of the tools that’s only available to be used for the testing which may have limited features
and other reports facility available. In some cases, for other tech debt tools even to get access to
the free versions we would need to request access by filling a form in which we have no definite time
defined for when the expected response would be, which also limits the usage of other tools in the
market.
One area I felt from the research and existing tools is with current boost in the AI sector. So as an
area of future works can be what impact does AI (Artificial Intelligence) bring to the current technical
debt tools. AI is picking up pace extremely fast in the past year or two. AI is certainly influencing all
aspects of the software development cycle. There are AI plugins for the IDE used for development.
ChatGPT being the one of the contenders which basically writes code from scratch which is a huge
win over the productivity aspects with reduced lead time. Similarly, there are certainly interesting
aspects which AI will change the current way of doing things for scanning repositories.

QR Code for Recording

9

Evaluating the Next Generation Sidecar-less
Kubernetes Service Mesh: Ambient Mesh
Anupam Saha
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193210@myTUDublin.ie

Introduction
A service mesh is a dedicated infrastructure layer in the Kubernetes cluster to make service-to-service communication safer, faster, and more reliable.
Typically, service meshes are built with a two-tier architecture, housing a control plane for mesh configuration and a data plane to provide mesh
functionalities. The data plane consists of a sidecar container that attaches itself to a microservice pod, the smallest deployable unit in Kubernetes.
Though this sidecar container architecture reduces a lot of burden on microservice source code, it also increases the overall compute resource usage of
pods. To counter this, a new data plane architecture called ambient mesh was born. Instead of running a sidecar container in each microservice pod,
ambient mesh implements the data plane by deploying a single proxy per node. This utilizes the Linux eBPF technology and brings a lot of excitements
in service mesh space. Ambient mesh was originally developed by Solo and Google, but now it is part of the open-source project Istio. This research
explores the ambient mode that comes with the newer version of Istio to evaluate its compute resource usage and operational complexities.

Objectives

RQ1. Does Istio ambient mode consumes less
compute resources than sidecar mode?

RQ2. Does the sidecar-less architecture reduces
operational complexities?

Motivation
With the release of ambient mesh alpha ver-
sion as part of Istio, a massive improvement in
compute resource consumption is reported over
sidecar architecture in multiple gray literature,
however, no academic research paper is avail-
able. While most of the service mesh products
available today either use Envoy or in-house-
developed sidecar proxies to determine the suc-
cess factor, ambient mesh applies a completely
different approach by leveraging Linux eBPF
technology and separating layer 4 and layer 7 ca-
pabilities. While eBPF gives the ambient mesh
to improve its resource efficiency, two separated
layers allow Kubernetes administrators a differ-
ent level of flexibility while deploying Istio in
their environment. All of these bring an excit-
ing opportunity to evaluate and publish an aca-
demic research report on ambient mesh.

Methodology

A research platform is built to investigate the compute resource consumption by Istio sidecar and
ambient modes after exploring the ambient mesh architecture. In sidecar mode, a tight-coupled
architecture is seen where envoy proxies are attached to each running service pod, as shown in
Figure 1, whereas ambient mode deploys a single Ztunnel proxy per node, as shown in Figure 2.
The research is based around the principles of having multiple test executions with Ztunnel and
Waypoint proxies engaged in ambient mode and Envoy proxies attached to each pod where a demo
application, Bank-of-Anthos (BOA), is deployed to a Kubernetes cluster. To follow an enterprise-
grade deployment model, BOA is deployed in single and multiple Kubernetes namespaces to explore
the intensive nature of Istio in both modes. Google Cloud Platform is used as a cloud provider for
the research, where Kubernetes clusters are provisioned using Terraform and Istio is installed using
Istioctl and Istio operator. To engage Istio in resource-intensive filtering, 10-minute load testing is
performed on BOA for each test session, along with layer 4 and layer 7 traffic filtering. Test results
are captured from the Grafana dashboard by applying Prometheus metrics for CPU and memory. To
measure operational complexity, Istio is upgraded using a blue-green deployment strategy to check
whether a pod restart is required to apply the new version of Istio to the running microservices.

Research Findings

Conclusions and Future Work
While the sidecar-less model of ambient mesh brings some significant improvements in compute
resource consumption and operational excellence, the sidecar model of Istio is well established and
widely used today. In near future when a stable version of ambient mesh is released, this scenario
shall be changed and ambient mode may become the default installation mode for Istioctl. Leveraging
Linux eBPF technology, ambient mesh brings a lot of opportunity in service mesh space for future
research. Some of which can be categorized as Istio’s network latency due to Ztunnel and Waypoint
proxies distributed nature and supporting Kubernetes Jobs or server-send-first protocols features
which are currently not supported by Istio sidecar mode.

QR Code for Recording

10

Combining Web Application Security Test-
ing Tools
Darragh Madden
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00180709@myTUDublin.ie

Introduction
2023 has seen numerous high-profile instances of data leaks and breaches across a variety of industries. It is imperative that organisations have a
comprehensive security testing strategy in place to mitigate the risk posed by malicious actors. To aid in securing web applications, organisations
typically employ one of three approaches: Static Application Security Testing (SAST), Dynamic Application Security Testing (DAST), Interactive
Application Security Testing (IAST). Research has found that SAST & DAST tools are prone to identifying high numbers of false positives (report
vulnerabilities where no issue actually exists). In an effort to reduce the number of false positives reported by tools research has investigated combining
tools with increased vulnerability detection being observed.
Research Question: Does combining SAST, DAST & IAST tools result in enhanced vulnerability detection compared to using each tool individually?

1-Out-of-N ApproachMethodology
1. Tool Selection
This research investigated the performance of a combination of Open Source tools: FindSecBugs
(SAST), OWASP ZAP (DAST) and Contrast Community Edition (IAST).

2. Benchmark
The OWASP Benchmark is an open source web application built in Java and is deployed in
Apache Tomcat. The latest version of the Benchmark (v1.2) contains a set of approx. 2,700
fully exploitable test cases which can be analysed by security testing tools to detect true and false
positives. A perfect score would see a tool identify 100% of true positives and 100% of true negatives.

3. Experiment
Each tool and the OWASP benchmark were downloaded and run locally. The benchmark provides
shell scripts for running both FindSecBugs and Contrast CE. OWASP ZAP was run in two steps:
first using the Spider to identify all relevant HTTP links in the web app and then the Active Scan
was run. The benchmark provides a separate shell script to convert the raw results files (XML &
LOG) into CSV files containing the test results.

4. Method to Combine Results
Simple 1-out-of-N approach was used to combine the results for every test, for each of the 3 tools,
to get a Combined Tools result.

Combined Tool Test Results

Results

Conclusions and Future Work
This study found that a combination approach can lead to enhanced vulnerability detection. A
benefit of the approach is that each tool found vulnerabilities that the others did not, which resulted
in 100% vulnerability detection.
A vital consideration however are the tools to be included: FindSecBugs reported a large number
of false positives which the Combined Tools approach inherited. Surprisingly, OWASP ZAP didn’t
report many instances of vulnerabilities at all. These findings may bring into question the usefulness
of a combined approach. A recommendation to mitigate this, and to maximize efficiency, is to give
preference to tools with known low false positive detection.
Future work may research a combination approach utilizing commercial tools or implement a bench-
mark with modern vulnerability types present such as NISTs JULIET web application. Given the
IAST tool was accurate, further research could also investigate combining multiple IAST tools to
assess their performance.

QR Code for Recording

11

A Performance and Cost Analysis of Java-
based Function-as-a-Service on AWS
Alan Kavanagh
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00080986@myTUDublin.ie

Introduction
This study consists of a research project that compares and contrasts the performance and cost of Java-based Function-as-a-Service (FaaS) solutions
on Amazon Web Services (AWS). The objective of the research is to understand the improvement that each solution offers with regard to cold start
mitigation for Java-based serverless functions on AWS. A series of experiments are conducted to assess the start-up performance and associated cost
of lambda functions deployed to AWS Lambda, AWS Lambda with SnapStart, and AWS Lambda with Provisioned Concurrency. The results of each
experiment are collected, depicted, and analysed, and then the findings and conclusions are presented in the form of a performance and cost comparison.

Hypothesis
“Lambda SnapStart for Java can improve
startup performance for latency-sensitive appli-
cations by up to 10x at no extra cost” - AWS

It is expected that the results produced will help
identify an increased start-up performance for
SnapStart in comparison to Lambda and Provi-
sioned Concurrency. If the hypothesis is correct,
the results should indicate a reduced cold-start
latency, and reduced number of cold-start occur-
rences, without incurring any additional costs,
when deploying Java-based serverless functions
on AWS Lambda with SnapStart enabled

Research Questions
• RQ1. What impact does AWS Lambda

with SnapStart have on the cold start la-
tency, and cold start occurrences, of Java-
based serverless functions?

• RQ2. How does AWS Lambda with
SnapStart perform in comparison to AWS
Lambda, and AWS Lambda with Provi-
sioned Concurrency?

• RQ3. Does AWS Lambda SnapStart in-
crease start-up performance by 10x at no
extra cost?

Deployment Architecture and Invocation Flow

Results and Findings

Conclusions
SnapStart does not decrease the number of cold start occurrences in comparison to AWS Lambda.
SnapStart consistently has a 600ms restoration time, and outperforms AWS Lambda for functions
with a higher initialisation time. SnapStart incurs the same costs as AWS Lambda for higher exe-
cution time functions, or slightly more for lower execution time functions. Provisioned Concurrency
outperformed SnapStart in all scenarios, however, it incurred additional costs up to x5 or x6 in
comparison. Upgrading from JDK11 to JDK17 can decrease the average execution time by 75%.

QR Code for Recording

12

Comparing Tsetlin Machines to DNNs in
model performance and efficiency
Stefan Przemyslaw Gliniecki
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X12345678@myTUDublin.ie

Introduction
The research compared a novel and uprising Tsetlin Machines paradigm to Deep Neural Networks in terms of model performance as understood by the
Accuracy and F1 metrics, and model efficiency as understood by energy and time consumption of training and running the models.
Experiments for 9 datasets have been performed, so that the functional relationship between dataset characteristics and the comparative model perfor-
mance and efficiency could be investigated.
For obtaining results of statistical significance bootstrap procedure has been used. The efficiency differences proved TMs to be better than the DNNs,
with comparable results for the model performance measures. Main findings of the prior work have been replicated and built upon this work.
The differences in both performance and efficiency correlated with class imbalance while number of features and number of instances had influence on
the prediction time and energy, which grants support for future work.

Sensitivity to Hyperparameters
Tsetlin Machines scored much better in the en-
ergy efficiency, where the results did not de-
pend as heavily as the Deep Neural Networks.
This is perhaps because multiple parameters of
the DNNs are expected to influence this met-
ric, which are the number of hidden neurons,
number of examples in the learning batch or the
number of epochs, where there are only two pa-
rameters expected to have significant impact on
the efficiency, which are the number of clauses
and the number of epochs.

Performance and Efficiency
The differences in every measured metric is al-
most entirely statistically significant.
Findings from [?] are replicated entirely for the
energy efficiency benefit of Tsetlin Machines
over the Deep Neural Networks.
The model performance metrics are comparable:
in some of the datasets such as ANNEALING,
BC and FLAGS Tsetling Machines are outper-
forming the DNNs.
It is worth mentioning that the datasets where
DNNs thrive are the purely numeric datasets
such as HVR, MNIST or SONAR, the latter also
replicating findings of the literature.
What is also worth mentioning is that both time
and energy efficiency differences are very high.

Differences as a function of Dataset Characteristics
Due to a low number of data points (N=9), only a Spearman-ρ statistics was computed, and the
findings should be treated as a source of directional hypothesis for future research rather than an
evidence of a strong relationship.
The differences in energy and time prediction efficiency seems to diminish with the rise of the number
of instances in the training set and the number of features. Both effects could be partially explained
by other characteristics of the dataset such as existence of solely numeric data for MNIST, however
the data warrants future research on whether the prediction time benefit diminish with the rise of
the models complexities.
It is also an interesting, however a subtle effect, that the Class Imbalance influences the F1 of Tsetlin
Machines negatively as compared to the Deep Neural Networks. This may mean that TMs indeed
do not perform well for under-represented classes.
This hypothesis gains support when looking at the training energy efficiency as seen in the Figure
below as less complex thus less performing model should require less energy to train.

Topic Overview

Conclusions and Future Work
The research focused on the comparison of two machine learning models: Tsetlin Machines and Deep
Neural Networks in terms of energy efficiency and model performance as a relation of the dataset
characteristics. The relationships between the Dataset Characteristics should serve as an input to
the continuing research, where especially experiments for tasks with imbalanced classes should be
performed, perhaps by removing subsets of the classes from complete datasets.

QR Code for Recording

13

Istio Service Mesh vs. Capsule Operator for
Kubernetes Multi-tenancy
Sooraj Shajahan
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193249@myTUDublin.ie

Introduction
The growing adoption of Kubernetes and complex deployment requirements gives rise to the need for companies to identify possible opportunities to
reduce infrastructure costs, improve resiliency, and optimize operational efforts. One of the possible solutions to realizing these operational benefits is the
usage of multi-tenant architectural patterns on Kubernetes. Multi-tenancy pattern in software infrastructure enables multiple users and organizations
to use the common underlying infrastructure while allowing for data and resource level isolation. This research aimed to compare the efficacy between
a current widely used multi-tenancy implementation pattern that uses the Istio service mesh and a similar multi-tenant implementation that uses the
Capsule operator on top of Kubernetes.

The results showed that multi-tenancy implementation using only the Capsule operator did much better in terms of the latency, and requests per second
(RPS) and used comparatively less Kubernetes cluster resources than the Istio-based implementation.

Motivation
The motivation for this research is to objectively
compare an existing widely used multi-tenancy
implementation pattern that uses the Istio ser-
vice mesh and a similar implementation that
uses the Capsule operator to identify, highlight,
and provide recommendations to the personas in
software development to decide or be informed
of the considerations while making the technol-
ogy choices.

Research Questions
RQ1: What are the existing hard multi-tenancy
implementation models in Kubernetes?

RQ2: Do multi-tenancy implementation with
Capsule perform better than the implementation
using the Istio service mesh?

RQ3: What are the pros and cons of an imple-
mentation using the Capsule operator?

Results
1. Capsule-based implementation was less resource
intensive

It was observed that the difference in CPU usage ranges from
a minimum of 3% during the load test of small workloads to
a maximum of 11% during the soak test of large workloads.

2. Capsule-based implementation performed better

The multi-tenancy setup that was based on the Capsule op-
erator performed better than the setup that was based on
Istio. The differences in RPS ranged from 284 RPS for small
workloads to 545 requests for large workloads.

3. Response Time was better on Capsule-based im-
plementation

The differences in response times ranged from 1 ms for small
workloads to 2 ms for medium and large workloads between
the two implementations.

Performance Test Setup

The above figures show the performance test setups used to compare the multi-tenancy implementations based on the Istio service mesh and Capsule
operator. Python-based Locust was used as the performance testing tool. Prometheus, Grafana, and K8s Metrics Server based setup were used to
capture the resource usage and performance metrics.

Conclusions and Future Work
RQ1 was answered through the literature review and different implementations one using Istio
service mesh and the other using Kubernetes KCP operator were identified.

RQ2, the Capsule-based multi-tenant implementation was proven to be performing better with
higher throughput and comparatively lower resource consumption than the Istio-based implementa-
tion.

RQ3, it is recommended to use Capsule as the choice of Operator for implementing multi-tenancy
instead of the Istio service mesh, when some advanced features like mutual TLS (mTLS), HTTP
Request Retries, and Virtual Services are not required among the micro-services.

Future work in this area could look at (i) the Ambient Mesh pattern from Istio (ii) other service-
meshes like HashiCorp Consul, Linkerd, Open Shift, Nginx, etc.

QR Code for Recording

14

An analysis of Terraform as an enabler of a
multi-cloud strategy
Ruaidhri Moran
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193219@myTUDublin.ie

Introduction
As cloud computing adoption continues to grow in Enterprises, increasingly "Multi- Cloud" is being promoted as a solution to issues with vendor lock-in,
redundancy and access to the latest cloud service offerings. In this context, Multi-Cloud refers to the use of multiple Cloud Providers together based on
the requirements of an organistation, and specifically this research project deals with the three largest (by market share) Cloud Providers: Amazon Web
Services, Microsoft Azure and Google Cloud Platform. The thesis looks at Infrastructure as Code (IaC) and its impact on Multi-Cloud, investigating
whether there are benefits to using an IaC tool for implementing this strategy, specifically Terraform tool created by Hashicorp.

Hypothesis
The initial hypothesis was that by using an IaC
tool, one could switch cloud provider with rela-
tive ease in cases where there was a motivation
due to any reason. It was hypothesised that the
basic tenants of the cloud providers would be the
same and that very little would have to change in
the code between the different Cloud Providers;
essentially one would be able to design an ar-
chitecture and deploy this with low levels of ef-
fort (time and code-changes) on any other cloud
provider and achieve the same results.

Research Questions

RQ1: "How can IaC tools support the deploy-
ment of a multi-cloud strategy?"

RQ2: "Practically, what is involved in a
multi-cloud strategy?"

RQ3: "How do different Cloud Providers
interact with Terraform?"

Experiment Design

Experiment & Results
The experiment involved the deployment of an architecture (shown in the diagram above) of a MySQL 5.7 database with public internet access, a
virtual network and associated subnets, a Kubernetes cluster with an autoscaling node group of 1-n nodes, a WordPress workload running in the node
group and connected to the database, and finally the handling of all required rules and accesses including usernames/passwords. The experiment was
sufficiently complex to analyse the full use of Terraform with each of the Cloud Providers, and to support the answering each of the research questions
given above.

The main result out of the research was that while Terraform is useful and offers a number of key benefits for developers and administrators, it
still requires a knowledge of the relevant Cloud Provider as a key part of working with these applications is to understand the services and the Terraform
providers used to interact with them. Another result was around the use of Kubernetes, and while each Managed Kubernetes Service had differences,
deploying Wordpress to the Kubernetes service, allowed the use of the same code.

Conclusions
Although the initial hypothesis was proven wrong through the research project, it was found that
using Terraform offered many benefits and did help to support a multi-cloud approach moreso
than using each individual provider’s console. In analysing what was required for a multi-cloud
strategy, it was identified that deep knowledge of a Cloud Provider’s service offerings, knowledge
and understanding of the security aspects, and a well thought-out Architecture were all critical
success factors. Finally, analysing how each of the Cloud Providers interact with Terraform were
detailed through the experiments.

Overall, multi-cloud is a growing and important area of practice and research for academia
and organisations alike. The use of an IaC tool, such as Terraform, allow you to essentially speak
the same language as you build your infrastructure, although the individual metamodels of each
of the Cloud Providers mean that you are essentially speaking a different dialect to each of them.
This difference in the metamodel when describing services, infrastructure, SLAs, and SLOs mean
that there is a significant workload involved in deploying a multi-cloud strategy and while IaC
solves some of the problems, and reduces some of the human effort, it is not a panacea and does not
replace knowledge of the Cloud Providers at this time.

QR Code for Recording

16

ML pipeline performance comparison
Ben Stuart
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193209@myTUDublin.ie

Introduction
This project aimed to analyse and compare machine learning pipeline architecture performance to identify performance differences between architectures.
Interest in operating machine learning has become a growing topic in the data science community, which has brought an increased focus on MLOps.
Little research has been done on MLOps to date, with most works focusing on foundational information collection through literature reviews, interview
studies and proof of concept architectures. Progress has been achieved in establishing a high-level state-of-the-art, but much more research is required to
identify future work and deepen collective knowledge. Machine learning pipelines are often used for continuous training and machine-learning tasks in an
MLOps context to automate and orchestrate model training, delivery, and other tasks. This work compares Metaflow, Apache Airflow and SageMaker
pipeline frameworks deployed to AWS-based infrastructure regarding resource requirements for different training and inference workloads and runtime
environments (Kubernetes cluster, SageMaker jobs and AWS Batch).

Research Question
This work aimed to discover how distributed
machine learning pipeline architectures compare
resource utilisation and time taken to orches-
trate tasks with equivalent workloads and re-
source allocation.

What is an ML Pipeline?
Continuous Training pipelines are often called
Machine Learning pipelines (MLP), sometimes
referred to as ML workflow pipelines. These
pipelines are written as discrete interdepen-
dent steps, forming a directed acyclical graph
(DAG). Writing workflows in this way allows
these pipelines to be orchestrated on distributed
systems, re-run steps independently, and utilise
available compute resources efficiently. Notable
works and interview studies have shown writing
ML workloads as MLPs avoids known pitfalls in
notebooks such as scalability and low code qual-
ity.

Experiment design

1. Workloads:

Two separate workloads have been created to test the four tools. The first is a batch inference
workload to caption a set of images, and the second is a model training workload which trains a
neural network. These workloads have been chosen as they represent everyday use cases for MLP
tools and two critical stages of the model life-cycle, training and inference.

2. Architecture configuration:

This study focused on four architecture configurations: the Metaflow pipeline framework, backed
by Kubernetes cluster for compute resources; Metaflow us- ing the AWS managed service Batch for
compute resources; Apache Airflow, also supported by a Kubernetes cluster and AWS’s managed
service SageMaker. These configurations have been selected to represent a mixture of open-source
and self-hosted solutions and proprietary services and hybrids of the two.
Metaflow is an open-source MLP framework initially developed at Netflix; container-based service
that can be backed by various orchestration and computing resources such as Kubernetes, AWS
Batch, and Airflow. In this study, both Kubernetes and AWS Batch based architectures were used.
Apache Airflow is an open-source workflow orchestration platform. Like Metaflow, Airflow has a
Python library for describing workloads, known as DAGs (directed acyclic graph), and a container-
based service that can schedule tasks on multiple backend compute resources, including Kubernetes
used in this study.
SageMaker is a fully managed service from AWS that offers many sub-services, including scheduling
various job types using SageMaker pipelines. SageMaker pipelines comes with an SDK for describing
and executing pipelines. In this study, SageMaker Processing or Training jobs were used throughout
to execute tasks.
All data was collected using OpenTelemetry exporters and psutil functions.

Results

Conclusions and Future Work
The results of this work have shown that behaviours across architectures can differ vastly, and some
may be beneficial to different use cases. It has also been shown that while framework choice can
contribute to performance; it is most impacted by good, well-architected compute and orchestration
resources. Future work is required to understand deeply how data scientists use machine learning
pipeline frameworks, what features are most desirable, and the pain points with these tools.

QR Code for Recording

17

Comprehensive Study of Container Orches-
tration Frameworks
Ashwini Ravikumar
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00180728@myTUDublin.ie

Introduction
Container orchestration has emerged as a crucial technology in modern software development and deployment, providing a systematic and automated
approach to application definition, deploying, managing resource allocation, scheduling, container creation, networking and scaling containerized applica-
tions. This paper offers a comprehensive overview of container orchestration, fundamental functionalities, performance and future prospects. Conducting
a qualitative analysis of container orchestration technologies involves evaluating their characteristics, skills ease-of-use, advantages, disadvantages, and
appropriateness for various scenarios/use cases based on the organisational needs. While they all offer container orchestration capabilities, they differ
in their approach, features, and strengths, catering to different use cases and preferences. Tools leveraged for comparative study: Kubernetes,Docker
Swarm,Apache Mesos. These tools are presently a shortfall of thorough and objective assessment of their functionality and performance. This absence
hinders IT managers in selecting the most appropriate orchestration solution. The empirical data demonstrates that Kubernetes surpasses its competitors
in terms of performance when it comes to very complex application deployments.

Functional and Performance metrics evaluation
RQ1: Comparing the key features of chosen orchestration frameworks
RQ2: Comparing performance metrics for bench-marking
1.Qualitative Analysis: Comparing Common features vs Unique features: Gave us a clear under-
standing of features from which we can choose a CO framework which suits our needs and case
scenario.
2.Quantitative Analysis: We used Grafana, Prometheus, and built-in cAdvisor to monitor the
performance of CO frameworks for the below scenarios and conducted test experiments to measure
performance of the chosen CO frameworks.
Scenario 1: Deploying 2 Container (Nginx-Go)
Scenario 2: Deploying 3 Container (InfluxDB)
Scenario 3: Deploying 4 Container (WordPress)

Topic Overview
Will a functional and performance comparative evaluation be good enough to identify the best container orchestration tool? Evaluate the experiments
such as cluster provisioning time the orchestration tools take to deploy, failover times, startup time and so on. This thesis contributions are mainly of
two research parts. The 1st is the study aiming to offer the functionality analysis of Apache Mesos, Docker Swarm and Kubernetes. The 2nd is the
study aiming to offer the performance analysis conducting experiments to measure or analyse the application definition, deploying, managing resource
allocation, scheduling, container creation, networking and scaling containerized applications.

Conclusion and Future Work
Selecting an orchestration tool is a strategic choice that affects how well and efficiently applications
operate in a clustered environment, not just a question of personal taste. This study presents a
comprehensive analysis of the three container orchestration tools, comparing the various features
and services provided by different container orchestrators.
Answering RQ1 comparing common and unique features of chosen container orchestration tools.
We examined based on application provisioning, varied complexity test, container failover, CPU
and Memory usage, response time to answer the RQ2 comparing performance metrics. Functional
and performance comparative evaluation facilitates in identify the best container orchestration tool
based on the use case and complexity of the project.

Kubernetes is currently one of the most comprehensive orchestrators when it comes to functional
comparison available in the market. This is why practitioners are choosing to favour it above others.
Simultaneously, the intricate structure of the system can, in certain instances, impose a substantial
burden that could impede its performance. We also faced challenges like cost constraints of cloud
resources, Security challenges, Scalability challenges during our research work.

Future work: Organizations can efficiently adopt and extend the utilization of Istio in Kubernetes.
Security implementation and default feature provided the container itself can be studied in depth on
CO frameworks.

QR Code for Recording

18

A Comprehensive Evaluation of Helm and Helm-
file for Efficient Management of Microservices
Trinath Chakka
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193221@myTUDublin.ie

Introduction
Microservices are supported by Kubernetes, a popular container orchestration platform run by the Cloud Native Computing Foundation that offers
capabilities including automated deployment and scalability. This research evaluates critical performance aspects, focusing on chart execution time and
service uptime on Helm vs Helmfile. The goal of the study is to get a better knowledge of Helm and Helmfile’s respective advantages and disadvantages
when it comes to coordinating deployments within Kubernetes frameworks by analysing various deployment methodologies.

Deployment Comparision Table

Model
(Services)

Branches-
Runs

Average
Time for
all branches

Helm
Small
(5)

Main-10
Downgrade-10
Upgrade-10
Rerun-10

3m 59s
3m 30s
3m 31s
2m 17s

Total = 40 Total:13m

Helm
Medium
(25)

Main-5
Downgrade-5
Upgrade-5
Rerun-5

18m 6s
20m 51s
18m 40s
7m 7s

Total = 20 Total:64m

Helm
Large
(40)

Main-3
Downgrade-3
Upgrade-3
Rerun-3

28m 33s
31m 59s
30m 19s
16m 54s

Total = 12 Total: 107m

Helmfile
Small(5)

Main-10
Downgrade-10
Upgrade-10
Rerun-10

4m 21s
3m 25s
3m 6s
1m 51s

Total = 40 Total:12m

Helmfile
Medium
(25)

Main-5
Downgrade-5
Upgrade-5
Rerun-5

16m45s
15m50s
13m18s
3m15s

Total = 20 Total:49m

Helmfile
Large
(40)

Main-3
Downgrade-3
Upgrade-3
Rerun-3

32m 28s
20m 02s
15m 22s
6m 40s

Total = 12 Total:74m

Research Questions

RQ1 - How do chart execution times differ between Helm and Helmfile, particularly
when small, medium, and large components application scenarios are deployed?

The outcomes clearly show that Helmfile consistently outperforms Helm, with deployment efficiency
across small, medium, and large models increasing by a factor of three. Helmfile’s continuous ad-
vantage over Helm is indicated by its faster deployment times. Helmfile’s efficiency benefits are
highlighted by the significant time savings seen in all deployment sizes, making it an appealing
choice for enterprises looking to streamline Kubernetes deployment procedures. Helmfile’s continued
exceptional performance confirms its continued relevance as a tool of choice for orchestration in a
variety of deployment situations.

RQ2 - What effect do Helm and Helmfile have on Kubernetes application service up-
time, and how do their performances differ in terms of maintaining dependable and
continuous service availability?

In downgrade and upgrade circumstances, Helmfile regularly performs better than Helm, but Helm
typically delivers quicker service uptime, especially in big branches. Local state management and the
declarative nature of Helmfile help to speed up service uptime during upgrades. This sophisticated
knowledge highlights the need of picking orchestration tools customised to particular requirements
for continuous service availability in a variety of Kubernetes environments, enabling organisations to
make decisions between Helm and Helmfile based on their unique deployment needs.

RQ3 - How does Helmfile’s declarative approach and local state maintenance effect the
speed and reliability of complex deployment scenarios, and how does it handle Helm’s
management challenges?

In complex deployment scenarios, Helmfile’s declarative style and local state management greatly
improve speed, reliability, and efficiency over Helm. Helm’s drawbacks are addressed by Helmfile,
which enables faster and more effective deployments by maintaining a local state and expressing the
planned deployment state reliably. This is especially useful in large-scale installations. The ability
of Helmfile to track changes at a finer level is useful for managing version transitions and gives
enterprises an easier-to-use orchestration tool for complex Kubernetes installations.

Test Strategy
The experiment was carried out on Azure, using Azure DevOps for rigorous testing. The infrastructure
was divided into two separate projects for Helm and Helmfile, with repositories aimed to small, medium,
and large applications. Each repository, constructed with 5, 25, and 40 services. To enhance precision
and robustness, we conducted 10 cycles for the small branch, 5 cycles for the medium branch, and 3
cycles for the large branch. Each repository included four important branches: "main", "downgrade",
"upgrade" and "rerun". The results of all tests are gathered in the deployment comparison table above
and the corresponding picture for a visual representation is available here.
Main Branch: Latest Chart version.
Downgrade Branch: Last Stable version for compatibility validation.
Upgrade Branch: Same versions as main branch for compatibility check.
Rerun Branch: Evaluates deployment speed with no version changes

Conclusions and Future Work
Helmfile shows to be more effective and adaptable in small, medium, and large-scale Kubernetes
installations, improving dependability and deployment times. Helmfile’s attraction for easier Kuber-
netes administration, especially in large-scale deployments, is highlighted by rich insights provided by
statistical analysis and graphical representations. Helmfile beats Helm in deployment performance
by using locally cached resources, cutting down on the times associated with Helm’s sequential ap-
proach.
Future endeavors should prioritize enhancing compatibility, scalability testing, CI/CD integration,
security fortification, and user experience. These cooperative projects are essential to Helm and
Helmfile’s ongoing development and relevance in the changing Kubernetes orchestration scene. More
specifically, it is critical to prioritise compatibility with changing Kubernetes versions in order to
provide smooth upgrades and feature integration.

QR Code for Recording

20

Evaluation of Google GCP Object Storage
and Microsoft Azure Blob Storage
Melbin Paul
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193268@mytudublin.ie

Introduction
Cloud storage services have emerged as a popular choice for organizations seeking to store and manage their unstructured data effectively. Blob storage
and Object storage are two common ways to store and access data in the cloud. Microsoft Azure Blob Storage is Microsoft’s object storage solution
for the cloud. Google Cloud Platform (GCP) Cloud storage is Google’s object storage solution for the cloud. As organizations and individuals are
increasingly rely on cloud storage solutions for storing unstructured data, there is a need to understand and compare the Performance, Cost, Security,
and Vendor lock aspects of these two providers.
The scope of this research project is focused on comparing the performance, cost, security, and vendor lock aspects of GCP Object storage and Microsoft
Azure Block Blob storage. The primary data source for this research will be the experiments conducted to evaluate the performance and vendor lock
aspects. The secondary data sources which include books and online references will also be utilized to support and enhance the research for cost and
security aspects.

Vendor Lock
Migration and portabil-
ity experiment was done
using Azure DataFac-
tory Copy Data tool
and GCP Transfer Job.
Azure to GCP Migration
across two regions took
double the time in Europe
compared to Americas. File transfers between
the two providers took almost same time in
Americas. .

Cost
Cloud providers charge you based on Storage
Cost, Data Transfer Cost and Data Request
Cost. Azure Cool fares are better in Asia ,
whereas Archive and Hot is cheapest in Europe.
America is cheaper for all tiers in GCP. Stan-
dard, Coldline and Archive costs same in Europe
and Asia. Nearline is most expensive in Asia. In
terms of data operation and retrieval, price vary
across different regions in both providers.

Performance
1. Upload and Download:

Azure upload throughputs are higher than GCP for all file sizes with an
average of 6 times better throughput in Azure. Throughput to file size and
Time to file size coorelations follow similar patterns for both Azure and
GCP. Azure continues to perform better on download throughputs too for
all filesizes against GCP with an average of 14 time better throughput.

2. List and Concurrent Read/Write Operations:

In 5 runs, to list the 4 files of different sizes, Azure took around less than
15 milliseconds whereas GCP took around 3 secs. Azure takes around
2 secs compared to upto 12-17 secs for GCP for concurrent Write Read
operation. Azure performs similar in Europe and Americas , whereas
GCP performs better in Americas.

3. Serverless API:

By using Azure App Service and GCP App Engine serverless fea-
tures, Azure Europe hosted Serverless API , File stored in Azure is taking
similar download time to that in GCP for bigger file size sample whereas
Azure taking lesser time than GCP for smaller file sizes. For GCP Amer-
ica hosted Serverless API, File stored in GCP is taking only less than half
the time to download than its Azure counterpart for all file sizes.

Security

Data Backup and Protection: Above summary table
illustrates that data protection options in Azure Storage
Accounts and GCP Buckets exhibit similarities, albeit

expressed through their respective terminologies. From test
experience backup option in Azure stands out for its

user-friendly interface, offering a more intuitive experience
compared to GCP.

Data Security and Access Control: Above Security and Access Control
options summary table shows the different security and access control

settings for blob data at container/bucket, storage account level in Azure
and GCP. Both exhibit a strong dedication to data security, employing

comparable encryption strategies.

Conclusions and Future Work
Both GCP and Azure offer reliable and scalable storage options regardless of region. If you prioritizes
performance in cloud blob content downloads and uploads from a client application running from
cloud virtual machine as a key factor, Azure stands out as a preferred choice regardless of region.
Businesses prioritizing efficient and speedy file retrieval may find GCP Americas App engine more
favorable as a serverless solution. If cost-effectiveness is a primary consideration, especially storage
expenses, GCP proves to be more economical, particularly in the America, where costs are lower
across all tiers.
Future work: Performance tests of additional storage tiers offered by the Azure Cool and Archive
tiers, GCP Nearline, Coldline and Archive tiers. CPU/Memory, scalability tests can be considered.

QR Code for Recording

21

Amazon Textract vs Google Document AI
vs Azure Document Intelligence.
Ian Bruwer
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00142242@myTUDublin.ie

Introduction
This paper conducts a comparison of Azure AI Document Intelligence, Amazon Textract, and Google Document AI by evaluating price, ease of use,
performance, and accuracy. It looks at the mechanisms by which data is collected, from designing a task appropriate form with which to gather hand
writing samples, but also discussed the need for redaction of the data being sent for analysis. After sending the data for analysis through the various
providers the responses are analysed by comparing actual and expected results using the Ratcliff-Obershelp similarity technique. This measure of accuracy
is used to measure how accurately each of the sample documents is captured, but also to compare various sections of the sampled forms to ascertain if
certain processors perform better with certain form elements. Ultimately, the paper concludes with a recommendation that if one is already utilising
AWS or Azure workloads, then one can comfortably stick with using their respective document processing solutions. However, if starting a greenfield
project, overall pricing, ease of use, performance, and accuracy mean that Azure AI Document Intelligence should be your first choice.

Performance
Performance metrics collected for the various
providers indicated that Azure is the most per-
formant and consistent processor across all mod-
els for both redacted and unredacted docu-
ments. Google showed the widest variance in
performance between processing of redacted and
unredacted documents. AWS and Google pro-
cessors showed relatively equal processing times
for unredacted documents.

Accuracy
When utilising Pre-trained general models,
Azure and AWS proved to be the most accurate
of the processors with median accuracy of 100%
followed closely by Google. The most accurate
processsing was deliverd by Azure using Neural
and Template custom models, with the Google
template custom model showed surprising poor
performance.

Approach
1. Data collection:

A form was design to collect handwriting samples to represent subset of the types of input fields
contained in the Irish Naturilsation Process, consisting of various input types. i.e. Text boxes, Check
boxes, Tables. The forms were designed to provide expected text such that the research did not need
to be concerned with data protection legislation.

2. Data Preparation:

72 Forms where scanned to PDF, with each form also undergoing redaction to ensure that results
were not poisoned due to form containing both typed and written versions of the responses.

3. Model Training:

Where appropriate Neural and Template based AI models were trained for each provider; 10 docu-
ments used for unredacted documents, 15 documents used for redacted documents.

4. Document Processing:

Primary objective was to compare Generic Pre-trained models for each provider, however, Neural
and Template custom models were included in order to ascertain if future research was warranted
regarding custom trained models or if generic pre-trained models were adequate for most processing
tasks. Documents were sent for processing using REST APIs provided by each provider. This allowed
the evaluation of both the performance of the respective APIs, but also for analysis of responses.
Though the responses from the providers varied, none were overtly more complicated to process. All
results where parsed into consistent structure and were compared with the expected responses using
Ratcliff-Obershelp similarity score.

Results

Conclusions and Future Work
The research shows that if you are looking to perform document analysis, the choice of either Azure
AI Document Intelligence or Amazon Textract are suitable option if embedding into an existing
Azure or Amazon eco system respectively, however, if only just starting out, the accuracy, cost. and
ease of use of the Azure AI Document Intelligence makes it the prime candidate for new endeavours.
Future work needs to focus on an in depth comparison of the Neural and Template models provided
by the providers in order to ascertain if Google can achieve parity with Azure if provided with
enough training data. Generative AI is another area that needs to be investigate in this context as
the providers have mechanisms to integrate natural lanuage queries into document analysis.

QR Code for Recording

22

Comparative Analysis of Google Cloud De-
ployment Manager and Terraform
Brian Ryan
School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193204@myTUDublin.ie

Introduction
This research project examined Terraform and Google Cloud Deployment Manager in modern IT orchestration. It was an evaluation mission, placing the
two side-by-side to compare capabilities for organisations navigating cloud options. A research case study was completed where a simple but very effective
cloud architecture was created using Terraform and Google Cloud Deployment Manager. The researcher created a survey to enhance the research, and a
group of experts in the field answered it. The survey results were dissected and examined to further enlighten the reasearch about the nuances of these
IaC deployment tools.

Research Question
With the search for innovative ways to handle
the infrastructure that software is built on, and
due to cloud computing becoming the norm for
delivering software, the research question arises:

"How do Google Cloud Deployment Manager
and Terraform differ in performance, features,
and community support, and what insights can
be obtained from a survey of developers to
inform selecting either Google Cloud Deploy-
ment Manager or Terraform as the IaC tool of
choice?"

IaC Tool Performance
Speed is everything when getting resources up
and running in the cloud. The performance
metrics for Google Cloud Deployment Manager
and Terraform were tracked and analysed. The
average build times are close, but Terraform
destroys infrastructure more consistently every
time - the range of times it takes is much smaller.
With Deployment Manager, some deletes hap-
pen faster, and some take longer. We can see
from the results that there is no considerable
difference in build times. However, the time it
takes to delete could make a difference when se-
lecting a tool.

Case Study

Architecture Definition

The architecture is a baseline cloud architecture demonstrating some key IaC at play. The architec-
ture, which includes a VPC, subnet, two compute instances, a database, a database instance, and a
firewall rule to access the instances outside the VPC securely. These are the core resources in any
cloud app or service, networking, compute, storage, and security. It is not complex, but it is enough
to showcase some cloud capabilities in this research project. This architecture could also be extended
based on many future complex use cases.

Survey Responses Survey Results Comparative Analysis
Terraform has an edge over Google Cloud De-
ployment Manager in most critical areas, par-
ticularly infrastructure as code support and
multi/hybrid cloud support. The broader re-
sponses for Deployment Manager could be due
to users having more variation with cloud expe-
rience, which might mean different use cases or
a project tailored for specific functionality.
Fundamental concepts, such as handling large
complex deployments and using templates and
modules, are almost on par for both tools. Users
responded very similarly to these questions.
Terraform seems better for projects focused on
solid IaC management and multi/hybrid cloud
deployment support. Meanwhile, Google Cloud
Deployment Manager is boosted through tight
integration with GCP.

Conclusions and Future Work
For organisations invested in GCP, unless a transformation to hybrid cloud is planned, there is
no benefit of moving away from Deployment Manager. Terraform is the all-round utility king for
managing cloud services. Its primary benefit, which ensures it stands out from the crowd, is the ability
to work with all the major cloud platforms. The research shows that each tool differs slightly in each
domain, and Terraform comes out on top in its performance, features, and the greater community
support available. In the authors opinion the research has shown that Terraform has risen above
Google Cloud Deployment Manager as the Infrastructure as Code tool of choice. Future research in
Infrastructure as Code for Google Cloud Deployment Manager and Terraform could include studies
on incorporating new features and investigating how each tool handles emerging technologies and
integrates with the industry enhancements that will come.

QR Code for Recording

23

24

Navigating Quantum Realities: A Comprehensive Analysis of
Quantum Computers, Providers, and Qiskit Compatibility

Challenges and Opportunities
Weverton de Souza Castanho

School of Enterprise Computing and Digital Transformation, TU Dublin, Ireland
X00193205@myTUDublin.ie

Introduction
Analysis of the degree of availability, capacity, and compatibility of quantum infrastructure service providers and types of quantum computers running

a compatible application to assess the maturity level of available services and infrastructure. Since quantum computers are a promise for the present and
future, it is necessary to analyze their compatibility, identify the best development framework that can run on all of them, preserving the investment
applied in code..
The renowned scientist Richard Feynman was one of the pioneers in recognizing the importance of quantum computing and understanding that nature

could resemble a vast quantum computer. In his paper "Quantum mechanical computers" (1986), he laid the initial foundations for the next step:
quantum computing. Although quantum computers are a reality today, the question that remains is how far we can advance with them and what
features and compatibilities among them can drive scientific and human progress.

Quantum Photosynthesis
Photosynthesis is a vital process for plants and
life on the planet. However, its efficiency, ap-
proaching 100%, cannot be fully explained by
classical physics. One explanation lies in the
use of quantum processes within plant leaves. A
simulation based on a quantum circuit was de-
veloped and tested on various computers to as-
sess the maturity of Qiskit on these platforms.

Quantum Bitcoin Mining
The Bitcoin attracts significant investments
from banks and companies as a substantial store
of value. However, the energy consumption in
processing the currency is equivalent to that of
some countries. Quantum computers provide a
more efficient solution, consuming less energy
and processing cryptography rapidly through al-
gorithms designed for this purpose. An address
generator was tested using the Grover algorithm
on various quantum computing platforms.

Quantum Circuits

1. Quantum Photosynthesis Simulation:

The quantum circuit was implemented using the
Quantum Fourier Transform (QFT), for which
the SWAP command was employed as a simpli-
fication of the QFT.

2. Bitcoin Simulation:

This code is a basic implementation of the
Grover’s algorithm for a fictional Bitcoin ad-
dress search scenario. Grover’s algorithm is par-
ticularly powerful for unstructured search prob-
lems, providing a significant quantum advantage
over classical algorithms.

Topic Overview
The thesis aims to analyze the availability, capacity, and compatibility of quantum infrastructure service providers and types of quantum computers to
assess the maturity of currently available services and infrastructure. The importance of choosing a development framework compatible with various
providers is emphasized, with IBM’s Qiskit being the initial choice. Despite testing on various quantum computers in the market, the availability of
these machines still does not fully meet the demands of an emerging market seeking to understand and leverage the advantages of this new technology.
Several tests could not be completed due to limitations in containers running Jupyter IDEs, presenting significant memory constraints. Additionally,
the dependence of quantum computers on classical computers for data input and output is highlighted. More complex constructions, such as Shor and
Grover algorithms, often result in failures due to memory overflows.

Conclusions and Future Work
The Qiskit language, a promising tool for the future, opens up possibilities for compatibility among
various quantum processor architectures. However, there is still no complete integration among
the different available quantum computers. The shortage of machines for testing complicates the
debugging and improvement process for Qiskit applications, especially when migrating to other
quantum platforms. While the opportunities that quantum computing can offer to humanity are
significant, the journey for those embarking on it is challenging, filled with efforts and incremental
results.

Looking ahead, it would be interesting for universities to engage in creating a quantum com-
puter model based on Nitrogen Vacancy (NV) Diamonds. Companies in the market already offer
these synthetic diamonds for use in quantum computing. NV Diamonds enable the construction of
quantum computers at room temperature, are less susceptible to noise, consume less energy, take up
little space, and could be the key to developing an open-source computer. This would open up broad
opportunities for advancements in the field of quantum computing within educational institutions.

QR Code for Recording

25

Effectiveness of Microservice and Token based Security
access control method.
Emanual Alby - X00193250@myTuDublin.ie
School of Enterprise computing and Digital transformation, TU Dublin, Ireland
Supervisor: Dr. John Burns

Introduction

Microservices architecture is an architectural style that divides an application into small, independent services that are loosely coupled and
deployed independently. Each service is typically organised around a specific business capability. Though there are significant advantages
using microservices architecture, it increases the security risk complexities. Due to the distributed nature of the application, to manage the
access control is an additional exercise and to maintained for each distributed service. There are two types of access control approaches
namely Centralized and de-centralized access control architecture patterns.

• RQ1 - Whether Centralised Access control pattern is preferable over De-Centralised Access control pattern.
• RQ2 -. Will external access controls increase the efficiency of the application.
• RQ3 - Whether microservices pattern more advantages over the legacy architecture pattern.

QR code for recording

Conclusions and Future work

Topic overview

Advantages of Microservices over monolithic architect pattern

1. Latency & Complexity -> Monolithic advantageous

2. Reliability, Scalability and Time to Market -> Microservices advantageous

Centralized and De-Centralised

1. Maintainability

2. CPU and RAM Usage

3. Total number of requests

RQ1 -> Whether Centralised Access control pattern is preferable over De-Centralised Access control pattern.
• Experimental results denote security of the application is increased using De-Centralised access control patter due the distributed

nature. Single point of failure can be avoided using de-centralised access control pattern.
• Applications with Central access control can be easily maintained using centralised access control pattern.
• Complexity of the application reduces using centralised access control pattern.

RQ2 -> Will external access controls increase the efficiency of the application.
• Externalizing the access control increase the application security as the resource details will not be exposed to outside world.

RQ3 -> Whether microservices pattern more advantages over the legacy architecture pattern.
• Latency and complexity denote monolithic pattern is advantageous.
• Reliability, Scalability and Time to Market parameters denote microservices is advantageous

Conclusion:
• De-Centralised access control is preferred over Centralized access control as this increase the

security scalability, granularity of the security implementation.
• Access control using external token increase the system security.
• Microservices is preferred over Monolithic.

Future work
• The load test that is used can be extended to include more complex load test scenarios.
• We have a used a set of microservices for this experiment using spring boot and can use other

technologies.

